香港中文大學
The Chinese University of Hong Kong

CSCI2510 Computer Organization Tutorial 10：Direct Mapping vs Associate Mapping

Yuhong LIANG

Outline

- Direct Mapping vs Associate Mapping
- Hint for assignment3

Direct Mapping vs Associate Mapping

| Number of Cache Hits (0~99 are randomly generated $\mathbf{1 0 0 0}$ times) | | | |
| :--- | :--- | :--- | :--- | :--- |
| Cache Size | Direct | Associate (LRU) | Associate (FIFIO) |
| 4 | 51 | 36 | 35 |
| 8 | 89 | 81 | 86 |
| 16 | 175 | 159 | 160 |
| 32 | 323 | 300 | 292 |

Increasing the cache size, the hit rate increases

Hints for Assignment 3

- A computer system uses 32-bit memory addresses and it has a main memory consisting of 1Gbytes. It has a 4K-byte cache organized in the block-setassociative manner, with 2 blocks per set and 32 bytes per block.
- (a) Calculate the number of bits in each of the Tag, Set, and Word fields of the memory address.
- (b) Assume that the cache is initially empty. Suppose that the processor fetches 1032 words of four bytes each from successive word locations starting at location 0 . It then repeats this fetch sequence four more times. If the cache is 10 times faster than the memory, estimate the improvement factor resulting from the use of the cache.Assume that the LRU algorithm is used for block replacement.

Hints for Assignment 3

(a)

- A block has 32 bytes and it's byte-addressable;hence the Word field is 5 bits long.
- With $2 \times 32=64$ bytes in a set, there are $4 \mathrm{~K} / 64=64$ sets, requiring a Set field of 6 bits.
- This leaves $32-5-6=21$ bits for the Tag field.

Hints for Assignment 3

(b)

LRU:Replace the least recently used cache block in its set
First round: 1032 words of four bytes consititude 129 blocks(32 bytes per block) Fetch 0: set 0

Set 1	Set 2
1	2
65	66

Set 63
63
127

Fetch 128:

Set 0	Set 1	Set 2
128	$\mathbf{1}$	2
64	65	66

	Set 63
	63
\ldots	127

Let t be the access time of the cache.

$$
1 \times 129 \times 11 t
$$

Hints for Assignment 3

(b) LRU:Replace the least recently used cache block in its set

Second round:

Fetch 0: Set 0	Set 1	Set 2		Set 63
128	1	2		63
0	65	66	.	127
Fetch $64{ }_{\text {Set } 0}$	Set 1	Set 2		Set 63
64	1	2		63
0	65	66		127

Fetch 128

Set 0	Set 1	Set 2
64	1	2
128	65	66

	Set 63
\ldots	63
	127

$$
3 \times 11 t+126 * t
$$

Hints for Assignment 3

(b) LRU:Replace the least recently used cache block in its set

Third round:

Fetch 0: Set 0	Set 1	Set 2		Set 63
0	1	2	,	63
128	65	66		127
Fetch $64_{\text {Set } 0}$	Set 1	Set 2		Set 63
0	1	2		63
64	65	66		127

Fetch 128

$$
3 \times 11 t+126 * t
$$

Hints for Assignment 3

(b)

As execution proceeds, all memory blocks that occupy the first set of the 64 cache sets are always overwritten before they can be used on a succeeding round.

Memory blocks $0,64,128$ continually displace each other as they compete for the 2 block positions in cache set 0 .

Second round:
First round:
Fetch 0:

Set 0
0
64

Fetch 128:

Fetch $64{\underset{\text { Set } 0}{ }}$

Fetch 128
128
64

| Set 0 |
| :---: | :---: |
| 128 |
| 64 |

64
0

Third round:

Fetch 128 Set 0 128
128
Set 0
64

Hints for Assignment 3

(b)
$0,64,128$ continually displace each other

Summary

- Direct Mapping vs Associate Mapping
- Hint for assignment3

